Product Description

Outstanding features

Rexroth Miniature Linear Modules are precise, ready-to-install linear motion systems that combine high performance with compact dimensions.

They are especially suitable for handling tasks requiring high precision within restricted spaces. Rexroth offers favorable price/performance ratios and fast delivery.

Structural design

- Extremely compact extruded aluminum profile (frame) with integrated Rexroth Ball Rail System
- With Precision Ball Screw Assembly
- Special protective plastic sealing strip
- Ready-to-install linear modules in any length up to L_{max}

Attachments

- Maintenance-free digital AC servo drives with integrated brake and attached feedback, or 3-phase stepping motors
- Motor mount and coupling or timing belt side drive for motor attachment
- Proximity switches or magnetic field sensors with various mounting options
- Available as complete drive units with drive controller and control unit
- Standardized mounting interfaces

Further highlights

- Optimal travel performance due to integrated, zero-clearance Ball Rail System
- High load capacities and high rigidity
- Especially compact design due to integrated Ball Screw Drive
- High positioning accuracy and repeatability due to Precision Ball Screw Assembly with zero-backlash nut system
- High travel speeds combined with high precision and smooth running over long travel ranges
- Low-cost maintenance provided by one-point lubrication (grease) for Ball Rail System and Precision Ball Screw Assembly
- Easy motor attachment via locating feature and fastening threads
- Switches adjustable over the entire travel range
- Fully compatible with the camoLINE-system
- Positive-locking connection technology with centering rings
- Same outside dimensions mean that accessories and attachments can be used on either the MKK or the MKR
- Mounting in any orientation

MKK with screw journal

Structural Design

- 1 Ball screw with zero-backlash cylindrical single nut
- 2 Fixed bearing end block
- 3 Frame
- 4 Carriage
- 5 Sealing strip
- 6 Floating bearing end block

Motor attachment

- 7 Motor
- 8 Motor mount and coupling
- 9 Timing belt side drive

Motor mount and coupling

A motor can be attached to the Linear Module MKK 12-40 by means of a motor mount and coupling.

The motor mount serves to fasten the motor to the Linear Module and acts as a closed housing for the coupling. The coupling transmits the motor drive torque free of distortive stresses to the Linear Module's ball screw journal.

Timing belt side drive

On Linear Modules MKK 12-40 the motor can be attached via a side drive with timing belt.

This makes the overall length shorter than when attaching the motor with a motor mount and coupling. The compact, closed housing serves as protection for the belt and as a motor brooket Different accorrection or

motor bracket. Different gear ratios are available:

- i=1:1 - i=1:1.5

The timing belt side drive can be mounted in four different directions:

below, above (RV01 and RV02)

- left, right (RV03 and RV04)

Switch Mounting Arrangements

- **10** Proximity switch
- **11** Switching cam
- 12 Cable duct
- 13 Magnetic field sensor

Technical Data

Dynamic characteristics

Linear module		Guideway		Bal	Ball Screw			
	Dyn. load capacity	Dyn. load	moments	Size	Dyn. load rating	Dyn. load rating		
	C	M _t	ML	d _o x P	С	С		
	(N)	(Nm)	(Nm)		(N)	(N)		
MKK 12-40	3 750	22.3	93.8	12 x 2	2 240	4000		
				12 x 5	3 800			
				12 x 10	2 500			

 $d_0 = screw diameter$ P = lead

Suitable loads

(recommended values on the basis of past experience)

(mm)

(mm)

As far as the desired service life is concerned, loads of up to approximately 20% of the dynamic characteristic

values (**C**, \mathbf{M}_{t} , \mathbf{M}_{L}) have proved acceptable.

At the same time, the following may not be exceeded:

maximum permissible loads

permissible drive torque

permissible travel speed

Note on dynamic load capacities and moments

Determination of the dynamic load capacities and moments is based on a travel life of 100,000 m. Often only 50,000 m are actually stipulated. For comparison:

Multiply values **C**, \mathbf{M}_{t} and \mathbf{M}_{L} from the table by 1.26.

General Technical Data

Linear module	Planar m ine	oment of rtia	Length of carriage	Length mod	of linear dule L	Mass of linear	Moved mass of system m _{ca}	
	I _v	I _z		min.	max.	without drive	with drive	
	(cm ⁴)	(cm ⁴)	(mm)	(mm)	(mm)			(kg)
MKK 12-40	11.96	11.55	135	250	1000	0.0021 · L (mm) + 0.53	0.0021 · L (mm) + 0.65	0.39

Modulus of elasticity E

E = 70,000 N/mm²

Maximum permissible drive torque for mechanical system M_{mech}

The values shown for $\rm M_{\rm mech}$ are applicable under the following conditions:

- Horizontal operation
- Ball screw journal without keyway
- No radial load on ball screw shaft

Consider the rated torque of the coupling used!

Maximum permissible linear speed of mechanical system ${\rm v}_{\rm mech}$

Consider the motor speed!

Deflection f

The chart applies under the following conditions:

- Both ends firmly fixed (6 to 8 screws per side)
- Solid mounting base

The maximum permissible deflection f_{max} depends on the length L and the load F.

Technical Data

Drive data of timing belt side drive, fixed bearing end, for motor attachment via timing belt side drive

 $J_{S} = (k_{J_{fix}} + k_{J_{var}} \cdot L) \cdot 10^{-6}$

Motor		MSM 030B / MSM 030C / MSK 030C						
Frictional to	rque M_{Rsd} (Nm)			0.15				
		Permis	sible torqu	e up to	Reduce	Reduced mass		
		le	ngth L =	at	moment of inertia at			
Gea	ir ratio		i = 1	i = 1.5	i = 1	i = 1.5		
Linear	Ball screw	L	M _{sd}	M _{sd}	J _{sd}	J _{sd}		
module	size							
	d_o x P (mm)	(mm)	(Nm)	(Nm)	(10 ⁻⁶ kgm ²)	(10 ⁻⁶ kgm ²)		
MKK 12-40	12 x 2	1000	0.80	0.50	45.6	17.7		
	12 x 5	1000	1.60	1.10	45.6	17.7		
	12 x 10	1000	1.60	1.10	45.6	17.7		

- $M_{R \, sd} = frictional torque of timing belt side$ drive at motor journal (Nm)
- M_{sd} = maximum permissible drive torque of the timing belt side drive (Nm) Consider the maximum torque of the motor $\rm M_{max}$
- = reduced mass moment of inertia of J_{sd} timing belt side drive (kgm²) i
 - = timing belt side drive reduction

$$d_0 = screw diameter$$
 (mm)
 $P = lead$ (mm)

Mass moment of inertia of linear system $\rm J_S$ and frictional torque of the linear system $\rm M_{Rs}$

Linear	module Ball screw size d _o x P	k _{j fix}	k _{j var}	M _{Rs} (Nm)
MKK 12-40	12 x 2	1.2744	0.013	0.08
	12 x 5	1.4678	0.011	0.09
	12 x 10	2.2011	0.011	0.11

J _s	=	mass moment of inertia of	of linear
		motion system (without e	external
		load)	(kgm²)
k _{J fix}	=	constant for fixed-length	
		portion of mass moment	of
		inertia	(10 ⁶ kgm ²)
k _{J var}	=	constant for variable-leng	gth
		portion of mass moment	of
		inertia	(10 ⁹ kam)

	mentia	(10	ĸgiii)
L =	length		(mm)

 M_{Rs} Frictional torque of linear motion (Nm) system

Coupling data

Linear module	Motor	Coupling data							
	attachment	Rated torque M _{cN}	Mass moment of	Mass m _c					
			inertia J _c						
		(Nm)	(10 ⁻⁶ kgm ²)	(kg)					
MKK 12-40	MSM 020B	1.9	2.1	0.039					
	MSM 030B	3.7	7.0	0.075					
	MSK 030C								
	VRDM 368	5.5	20.0	0.040					

Calculations

Combined equivalent load on bearing of the linear guide

С

Nominal life of the guideway in hours:

$$L = \left(\frac{C}{F_{comb}}\right)^3 \cdot 10^5 m$$

$$L_h = \frac{L}{3600 \cdot v_m}$$

z₁ (mm)

С	=	dynamic load capacity	(N)
F_{comb}	=	combined equivalent load on	
		bearing	(N)
Fv	=	force in y-direction	(N)
F₂́	=	force in z-direction	(N)
L	=	nominal life	(m)
L _h	=	nominal life	(h)
M_L	=	dynamic longitudinal moment	
		load capacity	(Nm)
Mt	=	dynamic torsional moment	
		load capacity	(Nm)
M _x	=	torsional moment about the	
		x-axis	(Nm)
M _v	=	torsional moment about the	
,		y-axis	(Nm)
Mz	=	torsional moment about the	
		z-axis	(Nm)
v _m	=	average travel speed	(m/s)
z ₁	=	application point of the effect	ive
		force	(mm)

Linear Module MKK 12-40

Components and Ordering Data

Part number, length R1160 660 00, mm			Guideway	Drive unit				Carriage		
Versio	n 				Screw journal	Ball s d _o x P 12x2	crew si 12x5	ze 12x10	L _{ca} = 135 mm	
without drive	OA1		OA01	02			00		02	
with ball screw, w/o motor mount	OF01		OF01	01	Ø6	01	02	03	01	
with ball screw and motor mount	MF01		MF01	01	Ø 6	01	02	03	01	
screw and t side drive	RV01	RV02	RV01 - RV04	01	Ø6	01	02	03	01	
with ball s timing belt	RV03	RV04			Ø6	01	02	03	01	

⚠ Ordering example: See "Inquiry/Order" form

 $d_0 = screw diameter (mm)$

= screw lead (mm)

Please check whether the selected combination is a permissible one (load capacities, moments, maximum speeds, motor data, etc.)!

L_{ca} = carriage length

Ρ

$ \begin{array}{c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Motor attac	Attach- ment kit ¹⁾	for motor	Moto	r with rake	Cover	with g strip	Switches / Cable duct / Socket-p	Documentat	Measure- ment report	
$ \begin{array}{ c c c c } \hline \ & \ & \ & \ & \ & \ & \ & \$	_	00	_		00			Without switches	00		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-		Proximity switch	10		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	00	-		00			PNP NC 36-± Switching cam PNP NO 38-± Cable duct Switch type Socket/plug Mounting side (R/L) Direction of travel	18 25 27		02 Friction moment
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		04	MSM 020B	68	69			Switching distance			03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		03	MSM 030B	70	71	00	01	Magnetic field sensor with cable		01	Lead deviation
i = 102VRDM 3683536i = 117MSM 030B7071i = 1.5187071i = 115MSK 030C84i = 1.516MSK 030C84		01	MSK 030C	84	85			Reed sensor 51 Cable duct	25		
i = 117 MSM 030BMSM 030B7071Magnetic field sensor with connector Reed sensor 58 Hall sensor 59 Positioning accuracyi = 115 i = 1.5MSK 030C8485		02	VRDM 368	35	36			Hall sensor 52 Socket/plug	27		05
i = 1.5 18 NSK 030C 84 85 i = 1.5 16 MSK 030C 84 85	i = 1	17		70	71			Magnetic field concer with connector			Positioning accuracy
i = 1 15 MSK 030C 84 85 i = 1.5 16 MSK 030C 84 85	i = 1.5	18	WSW 030B	/0	71			Reed sensor 58			-
i = 1.5 16 MSK 030C 84 85	i = 1	15			0.5			Hall sensor 59			
	i = 1.5	16	MSK 030C	84	85						

1) Attachment kit also available without motor (when ordering: enter "00" for motor).

Length of the Linear Module MKK 12-40:

L = max. travel + 160 mm

Max travel = effective stroke + $2 \cdot$ excess travel

Stroke = maximum travel of carriage center (CC) between the outermost switch activation points Excess travel: In most cases the recommended limit for excess travel (braking path) is: Excess travel = $2 \cdot \text{screw} \text{ lead } P$ Example: Ball screw 12 x 10 (d₀ x P), Excess travel = $2 \cdot P = 2 \cdot 10 \text{ mm} = 20 \text{ mm}$

Linear Module MKK 12-40

Dimensions

One-point lubrication (grease): via funnel-type lube nipples DIN 3405-D3 on both sides

G

L_m

Version OF01

40

Version	Motor		Dimensions (mm)									
		D	E		F	G	G ₁	K	L _f	L	m	L _{sd}
										without	with brake	
			i = 1	i = 1.5						brake		
RV01 - RV04	MSM 030B	60	78	75	64.5	37	43.5	33.5	-	111	144	157
	MSK 030C	54	78	75	64.5	37	43.5	33.5	-	188	213	154
MF01	MSM 020B	42	-	-	-	-	-	-	44	109	140	-
	MSM 030B	60	_	-	-	-	-	-	50	111	144	-
	MSK 030C	54	-	-	-	-	-	-	50	188	213	-
	VRDM 368	57.2	-	-	-	-	-	-	50	116	157	-